返回首页

怎样才能将一张纸对折十次?

来源:www.fuzhangcheng.com  时间:2023-08-26 06:43   点击:100  编辑:zhao_admin   手机版

一、怎样才能将一张纸对折十次?

做多9次, 七次?我就能折,我早试验过了,卫生纸也不行,

至于10次,那还真没有人折出来

二、一张纸的厚度为0.15毫米,现将这张纸对折

由分析可得,共折10次,那么这一叠纸的厚度共有:

2×2×2×2×2×2×2×2×2×2×0.15=153.6(毫米);

故答案为:153.6.

三、为什么纸对折更容易撕开?

折叠后 因外力作用 留下的折痕处的分子结构已经有一部分被破坏

当有外力施加到这张纸上的时候, 折痕处的分子之间的分子键断裂需要的能量较少(已经有部分断裂了) 折痕处的分子之间的分子键最先断裂 所以一般从折痕处裂开 

四、一张纸不管大小,最多可以对折几次?

 无论如何只能折到7次 不管多大的纸都一样

不过网上说人为可以折八次  机器可以折九次最多

算算就知道了。如果纸的厚度达到了折叠面的一半就很难折叠了,由此可以推算,如果纸为正方形,边长为a,厚度为h,当折叠一次的时候,折叠边长不变,厚度为2倍的h,折叠两次的时候,折叠边长为原边长的二分之一,厚度变为4倍的h,就这也折叠下去,可以推出一个公式:当折叠次数n为偶数次时,折叠边长为l/(2^(0.5*n)),厚度变为2^n*h,当满足n>2/3*(log2(l/h)-1)时无法折叠。根据一般的纸张的状况,厚度大约为0.1mm,边长为1m时,根据以上公式,可以得出n>8.1918时无法折叠,这意味着对于厚度大约为0.1mm,边长为1m的正方形纸,只能折叠8次。在考虑一下更大的纸,厚度不变,边长为1Km时,根据以上的公式,可以得出n>14.8357时无法折叠,即只能折叠14次。因此,对于能折几次与l/h的值有关,如果l/h为无限大,它的对数也为无限大,自然可折叠的次数也为无限大。当然这些都是从理论上得出的结论,至于如此大的纸是否可折,以及如何折就无法论证了。

最后一个问题,如果把一张1mm的纸折100次,可以算一下它的厚度2^100*0.001m=.376m=1.267e+27m,月球到地球的距离为40万公里左右,粗略为4e+8m,因此远远的超过了月地距离。

从理论上讲,如果纸张的厚度为零,可以进行无数次对折,但是,由于纸张实际厚度的存在,这种理论也就不存在,因为对折后纸张的宽度不能小于等于纸张的厚度,也就是说一张厚度为1mm的纸,对折后纸张的宽度应大于1mm。

所以,一张纸最多能对折多少次实际是一个变数,它取决于纸张的实际厚度与大小。把一张厚度为1mm的纸对折100次,其厚度可以超过地球至月球的距离也只是一个不切合实际的数学理论推理数字。

按实际测算,新板大原始纸张的大小是840mm×1188mm(大一开),也就是16张A4纸大小,如果设纸张厚度为1mm,其对折1次的大小应该是840mm×593.5mm(其中0.5mm是对折边损失),对折两次的实际大小是593.5mm×419.5mm,对折三次的大小就是295.75mm×419.5mm,也就是说每次对折后的实际大小都要减去对折边的厚度损失,(当然,如果不是对折,而是裁开的话这个损失就可不计算在内了)对折四次后纸张的大小应该是207.75×295.75,从理论上推算,当纸张折到第十六次的时候(不计对折边损失)大小应该是3.28125mm×3.330625mm,但是,如果计算对折损失,只能折到第十二次。转载,希望对你有帮助

五、一米长卫生纸经过多次对折可以提起重物、但是原理是什么

没对折一次它的厚度便是原来的厚度的2倍,越后就越结实,自然可以提起重物

六、一张纸对折,为什么它受的重力 变大

重点是对折后的两个支点,纸受力后重力改变纸的形变,两边的支撑点又给物体一个支持力。所以在对折后相对来说会比不对折的纸受的压力大。当然也取决于纸的材质,质量,密度,和横截面等

顶一下
(0)
0%
踩一下
(0)
0%